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Dynamical symmetry and squeezing effect have been investigated in a classically chaotic quantum system
@M. Kuś, Phys. Rev. Lett.54, 1343~1985!# when it is restricted to the following initial condition: the atom in
its SU~2! coherent state and the field in the vacuum state. In the regime of classically regular motion, dynami-
cal symmetry and squeezing effects have been exposed under proper choice of the atomic coherent state; but,
in that of classically chaotic motion, the symmetry is destroyed thoroughly and the squeezing effect disappears.
@S1063-651X~96!07107-3#

PACS number~s!: 05.45.1b, 42.50.Dv, 42.50.Lc, 32.802t

The recently gained increase of understanding of classical
Hamiltonian systems, which are nonintegrable and therefore
display chaotic dynamical behaviors@1#, has led to the natu-
ral question of what the quantum properties of such systems
might be@2#. This field of study has been termed as ‘‘quan-
tum chaos.’’ A physically interesting example, which be-
longs to this field, is the most basic model of quantum optics
@3#, i.e., a two-level system consisting of a single two-level
atom interacting with a single quantized mode of the electro-
magnetic field. The Hamiltonian of this system reads

H5Va†a1vSz1G~a†1a!~S11S2!, ~1!

whereSz andS6 are operators of the atomic inversion and
transition, respectively;v is the atomic transition frequency;
a† and a are the creation and annihilation operators of the
field mode with frequencyV, respectively; andG is the
atom-field coupling constant. Throughout we employ the
unit with \5c51. The classical limit of this model is non-
integrable and can exhibit chaotic dynamical behaviors for a
large coupling constant@4#. Kuś et al. @5# have investigated
several statistical properties of the energy levels of this
model, and they found that the nearest-level spacing was
highly correlated and regular in contrast to the chaotic be-
haviors presented in the corresponding classical version of
this model. This result is inconsistent with the common be-
lief ~tested for certain variety of models! @6#: a quantum sys-
tem, whose classical counterpart is chaotic, should display
the spectral statistics consistent with the nearest neighbor
spacing distribution~basically close to the Wigner one! for
the Gaussian orthogonal ensemble~GOE! of random matri-
ces. Graham and Ho¨hnerbach@7# have indicated that such
results were closely related to the single two-level atom be-
ing considered: with a number of two-level atoms the statis-
tical behaviors of the GOE can be given under appropriate
conditions. Recently, we have given the reason why the GOE
statistics cannot appear in this system@8#: the dynamical
condition for the GOE is not satisfied in the spectral statistics
for this system, and the classical counterpart of this system

does not properly consider the quantum-classical correspon-
dence. However, although some regularities of the statistical
spectral of the energy levels have been found in this system,
Graham and Ho¨hnerbach@9# have shown that for sufficiently
strong coupling, the occupation probabilities of the two lev-
els show irregular behaviors, more precisely, they are quasi-
periodically, involving a large number of incommensurate
frequencies. For small coupling, the system behaves rather
regularly and the occupation probabilities show periodic ‘‘re-
vivals.’’ In addition, in order to study the dynamics of the
model~1! in the usual arena of classical dynamics, that is, in
phase space, some authors@10# have done work on this topic
from the point of view of the Husimi distributions. In this
paper, we turn our attention to the dynamical symmetry in
the model~1!.

The squeezed states@11#, which fulfill the uncertainty re-
lation with a reduced quantum dispersion, have been an in-
teresting topic due to their potential application@12# in grav-
ity wave detection, high-resolution spectroscopy, quantum
nondemolition experiments, quantum communications, and
low-light-level microscopy. It has been shown both theoreti-
cally @13# and experimentally@14# that a squeezed field can
be generated by various physical processes. Meanwhile, in-
creased attention has also been paid to the squeezing of
quantum fluctuations of the atomic dipole variables~i.e., the
atomic squeezing! @15#. Moreover, the relationship between
the field and atomic squeezing has even been discussed by
Wodkiewiczet al. @16#. However, less work has been done
on this topic in the classically chaotic system. It forms an-
other aim of this paper.

In the present paper, we have exposed the following ad-
ditional dynamical features in the model~1!: ~a! there exist a
striking dynamical symmetry and the field and atomic
squeezing in the case of sufficiently weaker coupling~i.e.,
the regime of classically regular motion@4#! when the system
is restricted to the following initial condition: the atom in its
SU~2! coherent state and the field in the vacuum state

uc~0!&5sinS u

2De2 i ~d/2!U2 1

2
,0L 1cosS u

2Dei ~d/2!U 12,0L , ~2!
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where 0<u,p denotes the initial distribution of the atom,
and 0<d,2p is the relative phase between the ground and
excited states.~b! for sufficiently stronger coupling~i.e., in
the regime of classically chaotic motion@4#!, the symmetry
is destroyed thoroughly and the squeezing effect disappears.

In order to investigate the squeezing properties of the ra-
diation field and the atom, we define the slowly varying Her-
mitian quadrature operators a15

1
2(ae

iVt1a†e2 iVt),
a251/2i (aeiVt2a†e2 iVt), S15

1
2(S1e

2 ivt1S2e
ivt), and

S251/2i (S1e
2 ivt2S2e

ivt),whereS1 andS2 , in fact, cor-
respond to the dispersive and absorptive components of the
slowly varying atomic dipole@17#, respectively. The above
operators obey the commutation relations@a1 ,a2#5 i 12
and @S1 ,S2#5 iSz . Correspondingly, the Heisenberg
uncertainty relations are (Da1)

2(Da2)
2> 1

16 and

(DS1)
2(DS2)

2> 1
4 ^Sz&

2. It is convenient to define the
following functions hi5(Dai)

22 1
4 and Fi5(DSi)

2

2 1
2u^Sz&u ~i51,2!. Then,the field squeezing is defined if

hi,0 (i51 or 2) @13#, so is the atomic squeezing ifFi,0
( i51 or 2) @15#.

Near resonance and for sufficiently weaker atom-field
coupling, the rotating-wave approximation~RWA! applies,
then, the Hamiltonian~1! can be written as

H5Va†a1vSz1G~a†S21aS1!. ~3!

This is the well-known Jaynes-Cummings model@19#, which
can be solved exactly. Restricting to the initial condition~2!,
we have obtained the time evolutionF1 andh2 as follows:

F1~ t !5
1

4
2
1

4
sin2~u!cos2~Gt!cos2~d!

2U 12cos2S u

2D cos2~Gt!2
1

4 U, ~4!

h2~ t !5
1

2
cos2S u

2D sin2~Gt!2
1

4
sin2~u!sin2~Gt!cos2~d!.

~5!

Then we have verified that a dynamical symmetry between
F1 and h2 is exposed under the parameter condition: arbi-
trary phased and 21,cos(u)<0. Furthermore, we have
found that under the following parameter condition:
21,tan(d),1 and 21,cos(u),2tan2(d), the fluctua-
tions inS1 anda2 can be squeezed almost at all times, with
identical squeeze duration (GTS5p) and squeeze
period (GTP5p) and maximum height of squeeze
peak Amax5uF1,0umax5uh2,0umax5cos2(u/2)@sin2(u/
2)cos2(d)21

2] @Amax appearing atGt5kp and (k11/2)p for
atomic squeezing and field squeezing, respectively, through-
out the paper,k50, integer#, but out of phase~i.e.,p/2). It is
clear that there exists a striking dynamical symmetry be-
tween the field and atomic squeezing~SFAS!, and here the
squeezed atom can radiate a squeezed field almost at all
times.

Now we examine the quantum dynamical properties of
the non-RWA-Hamiltonian~1!. Taking um,n& as a basis,
where Szum,n&5mum,n&, m56 1

2 and a1aum,n&
5num,n& ~n50, integer!, we can obtain the eigenstateuf i&
and the energy eigenvalueEi ( i51,2, . . . ) of thenon-RWA-

Hamiltonian~1! by truncating an infinite matrix to finite or-
der @5,7–9#. Given the initial stateuc(0)& of the system, the
expectable value of an observable variableh at timet can be
calculated as follows:

^h&5^c~ t !uhuc~ t !&5^c~0!ueiHthe2 iHt uc~0!&

5(
i

(
j

^c~0!uf i&^f j uc~0!&^f i uhuf j&e
2 i ~Ej2Ei !t.

~6!

(I) u52p/3 andd50. For a sufficiently weaker coupling:
Fig. 1~a! shows the time evolution behaviors ofF1 andh2
for u52p/3, d50, andG51025. We find that there exists
a SFAS, whereGTS5GTP5p, and Amax'0.062 for the
field and atomic squeezing, respectively, appears at the time
Gt5(k1 1

2)p andkp. This result can be understood as ad-
dressed above: in this case, the RWA applies, hence the
SFAS is observed in Fig. 1~a!.

For a strong coupling: when the coupling constantG is
increased up to the order 1021, we notice from Fig. 1~b! that
GTS andGTP are smaller than the constantp, Amax is less
than 0.062, and the squeezed atom cannot radiate a squeezed
field any more at the time regions nearGt5kp. It is clear
that the SFAS begins to be destroyed for the coupling con-
stantG up to the order 1021. Furthermore, for sufficiently
stronger coupling~i.e., in the regime of classically chaotic
motion @4#!, as shown in Fig. 1~c!, the squeezing disappears
almost entirely~only atomic squeezing appears at the early
time regions!, and the SFAS is destroyed thoroughly. In the
RWA Hamiltonian~3!, the counter-rotating wave terms are
neglected, but it is switched on in the non-RWA-

FIG. 1. Time evolution ofF1 ~the line marked ‘‘1’’! andh2 ~ the
line marked ‘‘2’’! in the non-RWA-Hamiltonian~1! for u52p/3,
d50, V5v51. ~a! G51025; ~b! G51021; ~c! G51.
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Hamiltonian~1!. Therefore it is the interference between the
real-photon processes and the virtual-photon processes that
destroys the SFAS.

(II) u52p/3 and d5p/4. In Fig. 2, we show the time
evolution behaviors ofF1 andh2 for u52p/3 andd5p/4
and with the same coupling constant as for Fig. 1. Also, we
find for a sufficiently weaker coupling, as shown in Fig. 2~a!,
there exists a dynamical symmetry betweenF1 andh2; the
symmetry begins to be destroyed for the coupling constant
up to the order 1021 @see Fig. 2~b!#; and the symmetry is
destroyed thoroughly for sufficiently stronger coupling@see
Fig. 2~c!#.

(III) u5p/2 andd50. According to Eqs.~4! and~5!, it is
obvious that in the RWA Hamiltonian~3!, both F1 andh2
equal zero for u5p/2 and d50. In the non-RWA-
Hamiltonian ~1!, however, we find that for a sufficiently
weaker coupling, as shown in Fig. 3~a!, there appear quan-
tum collapse revivals, and the squeezing effect is observed at
the collapse regions. In detail, during the time
2.35,Gt,2.45 in case~a!, we notice from Fig. 3~b! that
there also exists a dynamical symmetry betweenF1 and
h2 . For a sufficiently stronger coupling, as shown in Fig.
3~c!, we find that the quantum revivals and the squeezing
effect disappear and the dynamical symmetry is destroyed.

(IV) Conclusions and discussions. We draw conclusions
as follows: ~a! under the proper choice of an initial atomic
coherent state, dynamical symmetry and squeezing effects
are exposed in the regime of classically regular motion;~b!
however, in the regime of classically chaotic motion, the
squeezing effect disappears and the symmetry is destroyed.
thoroughly.

The sufficiently weaker coupling constants taken above
are accessible in the micromaser experiment@19#, and the

initial condition ~2! can be realized in the laboratory@16#.
This means that our above results for sufficiently weaker
couplings are significant in the micromaser experiment.

For a strong coupling constant, the two-level approxima-
tion breaks down far sooner than the RWA, and other atomic
levels, which are coupled by the field to the two levels with
a comparable strength, will cause an impact on the dynamics
which is at least comparable to the corrections of the
counter-rotating wave terms to the RWA. In the light of this
point, the studies for strong coupling are not realistic in
quantum optics and micromaser experiments. We feel, how-
ever, that the non-RWA-Hamiltonian~1!, as addressed be-
fore, may be of its own academic interest@4,5,7–10# in the
field of chaos. In Ref.@9#, Graham and Ho¨hnerbach have
indicated that the appearance of chaos in the full classical
system is signaled, in the quantum system, by the disappear-
ance of the quantum revivals. Here we obtained a similar
conclusion and even found some additional dynamical fea-
tures, i.e., symmetry breaking and disappearance of squeez-
ing effect.

FIG. 2. Foru52p/3 andd5p/4, the others are the same as for
Fig. 1.

FIG. 3. Time evolution ofF1 ~the line marked ‘‘1’’! andh2 ~the
line marked ‘‘2’’! in the non-RWA-Hamiltonian~1! for u5p/2,
d50, V5v51. ~a! G5531023; ~b! during the time
2.35,Gt,2.45 in case~a!; ~c! G51.
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The model~1! is, in fact, a very popular model in physics,
with a large variety of applications in condensed matter
physics @20#, macroscopic quantum tunneling@21#, atomic
and molecular physics@22#, as well as quantum optics@18#
and quantum chaos@5,7–10# ~note: in its different fields of
applications, the Hamiltonian~1! bears different names, such
as, ‘‘molecular polaron model,’’ ‘‘Rabi Hamiltonian,’’ etc.!.
In these contexts, the coupling constant is intrinsically much

larger than that in quantum optics. So, our findings may have
physical impact on these contexts.
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Éksp. Teor. Fiz.71, 1799 ~1976! @Sov. Phys. JETP44, 945
~1976!#; P.W. Milonni, J.R. Ackerhalt, and H.W. Galbraith,
Phys. Rev. Lett.50, 966 ~1983!; R.P. Frueholz, and J.C. Cam-
paro, Phys. Rev. A47, 4404~1993!, and references therein.

@5# M. Kus, Phys. Rev. Lett.54, 1343~1985!; W.-H. Steeb, C.M.
Villet, and A. Kunick, Phys. Rev. A32, 1232~1985!.

@6# F. Leyvraz and T.H. Seligman, Phys. Lett. A168, 348 ~1986!.
@7# R. Graham and M. Ho¨hnerbach, Phys. Rev. Lett.57, 1378

~1986!.
@8# R.H. Xie, D.H. Liu, and G.O. Xu, Z. Phys. B99, 605 ~1996!.
@9# R. Graham and M. Ho¨hnerbach, Z. Phys. B57, 233 ~1984!.

@10# M. Cibils et al., Phys. Rev. A46, 4560 ~1992!; L. Müller
et al., ibid. 44, 1022~1991!; M. Aguiar et al., Europhys. Lett.
15, 125 ~1991!.

@11# J. Opt. Soc. Am. B4, 1453 ~1987!, Special Issues on the
squeezed state, edited by H. J. Kimble and D. F. Walls.

@12# Appl. Phys. B,55, 189 ~1992!, Special Issues on its applica-
tions, edited by E. Giacobino and C. Fabre.

@13# J. Mod. Opt.34, 709 ~1987!, Special Issues on the squeezed
field, edited by P. L. Knight.

@14# A.M. Fox et al., Phys. Rev. Lett.74, 1728 ~1995!, and refer-
ences therein.

@15# T. Nasreen and M.S.K. Razmi, Phys. Rev. A.46, 4161~1992!,
and references therein.

@16# K. Wodkiewiczet al., Phys. Rev. A35, 2567~1987!, and ref-
erences therein.

@17# N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly,
Phys. Rev. A23, 236 ~1981!.

@18# E.T. Jaynes and F.W. Cummings, Proc. IEEE51, 126 ~1963!.
@19# G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett.58, 353

~1987!; G. Rempe, F. Schmidt-Kaler, and H. Walther,ibid. 64,
2783~1990!; O. Benson, G. Raithel, H. Walther,ibid. 72, 3506
~1994!.

@20# G. Yuval and P.W. Anderson, Phys. Rev. B1, 1522~1970!; R.
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